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tThis work proposes an upper bound on the maximal number of non-dominated points ofa multi
riteria optimization problem. Assuming that the number of values taken on ea
h
riterion is known, the 
riterion spa
e 
orresponds to a 
omparability graph or a produ
tof 
hains. Thus, the upper bound 
an be interpreted as the stability number of a 
ompa-rability graph or, equivalently, as the width of a produ
t of 
hains. Standard approa
hesor formulas for 
omputing these numbers are impra
ti
al. We develop a pra
ti
al formulawhi
h only depends on the number of 
riteria. We also investigate the tightness of thisupper bound and the redu
tion of this bound when feasible, possibly e�
ient, solutionsare known.Keywords: multi
riteria optimization, non-dominated points, 
omparability graph, stabilitynumber, produ
t of 
hains, Sperner property.1 Introdu
tionIn multi
riteria optimization, in opposition to single 
riterion optimization, there is typi
allyno optimal solution i.e. one that is best for all the 
riteria. Therefore, the standard situationis that any solution 
an always be improved on at least one 
riterion. The solutions of interest,
alled e�
ient solutions, are those su
h that any other solution whi
h is better on one 
riterionis ne
essarily worse on at least one other 
riterion. In other words, a solution is e�
ient ifits 
orresponding ve
tor of 
riterion values is not dominated by any other ve
tor of 
riterionvalues 
orresponding to a feasible solution. These ve
tors, asso
iated to e�
ient solutions, are
alled non-dominated points. For many multi
riteria optimization problems, one of the maindi�
ulties is the large 
ardinality of the set of non-dominated points, and the even larger
ardinality of the set of e�
ient solutions (
onsidering that several solutions 
an have thesame image in the 
riterion spa
e). However, similarly to single 
riterion optimization wherewe usually look for one among all optimal solutions, we usually look for all non-dominatedpoints and a 
orresponding e�
ient solution for ea
h su
h point. Thus, we 
an restri
t our
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study to the set of non-dominated points. Even with this restri
tion, it is well-known, thatmost multi
riteria 
ombinatorial optimization problems are intra
table, in the sense that theyadmit families of instan
es for whi
h the number of non-dominated points is exponential inthe size of the instan
e [4℄. This situation arises when the number of values taken on ea
h
riterion is itself exponential in the size of the instan
e. It is thus interesting to investigatethe number of non-dominated points when we know (or have an upper bound on) the numberof values taken on ea
h 
riterion. This problem 
an be stated within di�erent theoreti
alframeworks. Using graph theory, the maximal 
ardinality of a set of non-dominated points
orresponds to the stability number of a given graph. Using ordered set theory, this maximal
ardinality 
orresponds to the width of a produ
t of 
hains. These two frameworks providedi�erent insights on our problem.Up to our knowledge, this problem has not been dealt with, ex
ept very re
ently byStanojevi¢ et al. in [9℄. The best bound they give is obtained by a re
ursion formula whi
h iswell-known in ordered set theory [8℄ and that we re
all in our Proposition 1. Unfortunately, thisformula be
omes qui
kly impra
ti
al when the number of values on ea
h 
riterion in
reases.One of our purposes is to provide an alternative formula whi
h does not depend on thesenumbers.In the following se
tion, we de�ne the basi
 
on
epts and formalize the problem both in the
ontext of graphs and ordered sets. Then, in se
tion 3, we deal with simple 
ases and provide,in the general 
ase, a formula using a 
ombinatorial version of the in
lusion-ex
lusion prin
iple[3℄. The time for 
omputing this formula is only exponential in the number of 
riteria. Wealso make 
omparisons with other bounds whi
h are easier to 
ompute. In se
tion 4, we showthat the proposed bound is tight for many 
lassi
al multi
riteria optimization problems. Inse
tion 5, we try to redu
e the maximal number of non-dominated points using known feasiblesolutions, possibly e�
ient. We 
on
lude with some possible extensions to this work.2 Basi
 
on
epts and problem statements2.1 Basi
 
on
eptsIn this paper, we 
onsider multi
riteria optimization problems formulated as:
min
x∈S

{f1(x), . . . , fp(x)}, (1)where f1, . . . , fp are p ≥ 2 
riteria fun
tions to be minimized and S is the set of feasiblesolutions.We distinguish the de
ision spa
e X whi
h 
ontains the set S of feasible solutions fromthe 
riterion spa
e Y ⊆ Rp whi
h 
ontains the 
riterion ve
tors asso
iated to these solutions.We denote by f(x) = (f1(x), . . . , fp(x)) the feasible point asso
iated to a feasible solution
x ∈ S, and by Z = f(S) the set of images of the feasible solutions. We de�ne in the 
riterionspa
e Y , the following partial stri
t order, denoted by ≤, su
h that for any y, y′ ∈ Y , y ≤ y′if yi ≤ y′i for all i ∈ {1, . . . , p} and y 6= y′. Relation ≤ 
orresponds to the standard dominan
erelation used in multi
riteria optimization.Then we de�ne e�
ient solutions and non-dominated points, respe
tively, in the de
isionspa
e X and in the 
riterion spa
e Y , as follows:2



De�nition 1. A feasible solution x ∈ S is 
alled e�
ient if there is no other feasible solution
x′ ∈ S su
h that f(x′) ≤ f(x). We denote by SEff the set of e�
ient solutions. If x ise�
ient, f(x) is a non-dominated point in the 
riterion spa
e, and let ZND = f(SEff).In this 
ontext formulation (1) means that we aim at generating the set of all non-dominated points and a 
orresponding e�
ient solution for ea
h su
h point.In this paper, we assume that fi 
an take up to ci + 1 values, where ci is a nonnegativeinteger. Thus, we 
onsider, without loss of generality, that ea
h fi 
an take integer valuesbetween 0 and ci, i = 1, . . . , p.In some 
ases, the ci values are known pre
isely, e.g. for qualitative 
riteria whi
h takevalues on a s
ale whose grades 
orrespond to prede�ned judgements. In other 
ases, thesevalues 
an only be approximated. For instan
e, assuming that 
riterion fun
tions are integer-valued, we 
an �nd an upper bound on ci by 
omputing the 
oordinates of the ideal andanti-ideal points, 
orresponding, respe
tively, to the best and the worst possible values onea
h 
riterion. Better bounds 
an be given if we 
an 
ompute the 
oordinates of the nadirpoint, whi
h 
orresponds to the worst possible values over the set of non-dominated points.Unfortunately, this is not easy in general, espe
ially when the number of 
riteria is at least 3 [5℄.The problem of determining the maximum 
ardinality of the non-dominated set 
an bestated as follows.Max SizeNDInput: an integer p and p integers ci, i = 1, . . . , p.Output: maximum 
ardinality of the non-dominated set ZND asso
iated to a set Z of p-dimensional points su
h that at most ci+1 values are taken on the ith dimension, i = 1, . . . , p.Let (ci + 1) = {0, . . . , ci}, i = 1, . . . , p and P = (c1 + 1)× . . .× (cp + 1). Any relevant set
Z, and in parti
ular any of those leading to a non-dominated set of maximum 
ardinality, isin
luded in P .2.2 Statement as a graph theory problemConsider the graph G = (P,E) whose set of verti
es is P = (c1 + 1) × . . . × (cp + 1) and setof edges is E = {(u, v) ∈ P × P : u ≤ v}. By 
onstru
tion, G is a 
omparability graph (i.e. agraph that admits a transitive orientation), sin
e relation ≤ is transitive.In this 
ontext, determining the maximum number of non-dominated points amounts todetermining the maximum 
ardinality of a stable set in G, i.e. 
omputing α(G), the stabilitynumber of G. It is well-known that α(G) 
an be determined in polynomial time when G isa 
omparability graph [6℄. In our 
ase, this is a
hieved by 
omputing a minimum �ow in thedigraph G′ = (P,≤) from (0, . . . , 0) to (c1, . . . , cp) where ea
h vertex has a lower bound of 1.Then α(G) 
orresponds to the value of this minimum �ow in G′.Computing a minimum �ow in G′ 
an be performed in a time polynomial in the numberof verti
es P =

∏p
i=1(ci + 1). Sin
e the input of Max SizeND is not G′ but only values

c1, . . . , cp, whi
h are en
oded in binary, this approa
h only gives us a pseudo-polynomial timealgorithm to solve Max SizeND.2.3 Statement as an ordered set theory problemGiven a partially ordered set (S,R), we re
all that a 
hain is a totally ordered subset andan anti
hain is a subset whose elements are pairwise in
omparable. Moreover, the height of3



(S,R), denoted by h(S), is the maximal 
ardinality of a 
hain in S, and the width of (S,R),denoted by α(S), is the maximal 
ardinality of an anti
hain in S. (S,R) is said to be rankedif we 
an de�ne a fun
tion r su
h that for any x, y ∈ S, whenever xRy and there is no element
z ∈ S su
h that xRzRy, we have r(y) = r(x) + 1. Calling Lk the level of rank k in S, i.e.the subset of elements of S with rank k, we de�ne nk = |Lk| and σ(S) = maxnk. Sin
e thelevels are anti
hains, we have α(S) ≥ σ(S). Finally, a partially ordered ranked set S is saidto satisfy the Sperner property if α(S) = σ(S) [2℄.In our 
ase, P = (c1 + 1)× . . .× (cp + 1), whi
h is a produ
t of 
hains, is partially orderedby the dominan
e relation ≤. The resulting partially ordered set (P,≤) has height h(P ) =
∑p

k=1ck (denoted for short by h in the following). Moreover, (P,≤) 
an be ranked using rankfun
tion r whi
h asso
iates to ea
h element (y1, . . . , yp) ∈ P its rank r(y1, . . . , yp) =
∑p

k=1 yk.In this 
ontext, solving Max SizeND is equivalent to determining the width α(P ). Were
all the following result.Theorem 1. (De Bruijn et al. [1℄) A produ
t of 
hains satis�es the Sperner property.Therefore, sin
e P is a produ
t of 
hains, we have α(P ) = σ(P ). Thus, we are interestedin determining the 
ardinality of a level of P whi
h has the largest number of elements. Itis well-known that the levels of maximum 
ardinality are all 
entered around the level Lh/2if h is even, and the levels L(h−1)/2 and L(h+1)/2 if h is odd [2, 8℄. Thus, determining α(P )amounts to 
omputing n⌊h
2
⌋.Le
ler
 [8℄ and Caspar et al. [2℄ proposed indu
tion formulas to 
ompute n⌊h

2
⌋. Neverthe-less, these indu
tion formulas depend on p but also on the values ci, i = 1, . . . , p. Sin
e thevalues ci may often be large, these formulas are not really usable in pra
ti
e, as a
knowledgedby the previous authors. This is, however, another pseudo-polynomial time method to solveMax SizeND. The motivation is to obtain a new more pra
ti
al formula, the 
omplexity ofwhi
h does not depend on the values ci, that is a strongly polynomial time algorithm.3 Computation of the width of a produ
t of 
hainsWe �rst provide an upper bound on the width of a produ
t of 
hains P , showing that thisbound is tight in a spe
ial 
ase, whi
h in
ludes the bi
riteria 
ase. Then, we propose and
ompare two formulas for 
omputing exa
tly α(P ).We assume w.l.o.g. that the 
riteria are numbered by non-in
reasing order of values ci,that is c1 ≥ ... ≥ cp.3.1 A simple upper bound on α(P )A �rst simple upper bound on α(P ) is given by the following result.Lemma 1. α(P ) ≤

∏p
i=2(ci + 1).Proof : By 
ontradi
tion, if α(P ) >

∏p
i=2(ci + 1) there exist at least two non-dominatedpoints with the same values on 
riteria fi, i = 2, . . . , p. Then, among these two points, thepoint with a worse value on f1 is dominated by the other one. 2This upper bound is tight in a parti
ular 
ase, as shown in the following lemma:4



Lemma 2. α(P ) =
∏p

i=2(ci + 1) if and only if c1 ≥ ∑p
i=2ci.Proof :

⇐ If c1 ≥
∑p

i=2ci then all possible ∏p
i=2(ci + 1) 
on�gurations on the last p − 1 
riteria
an be 
ompleted on 
riterion f1 so as to de�ne non-dominated points. Indeed, any point withvalue vj on 
riterion fj , j = 2, . . . , p is non-dominated if it is assigned the (nonnegative) value

∑p
i=2ci −

∑p
i=2vj on 
riterion f1.

⇒ If α(P ) =
∏p

i=2(ci + 1), all possible 
on�gurations on the last p − 1 
riteria must
orrespond to non-dominated points. In parti
ular, the ∑p
i=2ci + 1 following 
on�gurations,whi
h 
onstitute a 
hain on the last p− 1 
riteria, must 
orrespond to non-dominated points:

(∗, 0, . . . , 0), (∗, 1, 0, . . . , 0), . . . , (∗, c2, 0, . . . , 0),
(∗, c2, 1, 0, . . . , 0), . . . , (∗, c2, c3, 0, . . . , 0),
. . .
(∗, c2, c3, . . . , cp−1, 1), . . . , (∗, c2, c3, . . . , cp−1, cp)For this 
hain on the last p− 1 
riteria to be
ome an anti
hain on the p 
riteria, we need

∑p
i=2ci + 1 di�erent values on 
riterion f1, and thus c1 ≥ ∑p

i=2ci. 2In the parti
ular 
ase where p = 2, we obtain the following 
orollary, sin
e c1 ≥ c2.Corollary 1. If p = 2, we have α(P ) = c2 + 1.3.2 Exa
t 
omputation of α(P )Sin
e P satis�es the Sperner property, we noti
ed at the end of se
tion 2.3 that α(P ) = n⌊h
2
⌋.We �rst review a well-known re
ursion formula for 
omputing n⌊h

2
⌋, whi
h is not pra
ti
ableas values ci grow. Then, we propose an alternative analyti
al formula, whi
h is shown to bemu
h easier to implement.3.2.1 A re
ursion formulaAs indi
ated in [8℄, the following result is known from "folklore".Proposition 1. Let P ′ = P × (c+ 1) where P is a produ
t of 
hains. The values n′

k, the sizeof level of rank k in P ′, 
an be obtained from values nk by the following re
ursion:
n′
k =

c
∑

i=0

nk−iwhi
h 
an be rewritten as
n′
k = n′

k−1 + nk − nk−c−1 (2)where nk = 1, for all k ≥ 0 when P is a 
hain and nk = 0 for k < 0.As outlined in [8℄, this re
ursion is relevant in pra
ti
e only for a small number of 
riteriaand small values ci. More pre
isely, the 
omplexity of this indu
tion formula is given by thefollowing result.Lemma 3. The 
omputation of the width of the produ
t of 
hains P = (c1 + 1) × . . . ×
(cp + 1) using formula (2) of Proposition 1 is done in Θ(p2cmax) operations, where cmax =
max{c1, . . . , cp}. 5



Proof : At ea
h step i of the re
ursion for i = 1, . . . , p, the 
omputation of the 
ardinalityof ((
∑p

j=p−(i−1) cj) + 1)/2 levels is needed. Sin
e ea
h of these 
ardinalities is 
omputedin 
onstant time, the 
omputation of α(P ) is performed in ((
∑p

i=1 ici) + p)/2 = Θ(p2cmax)operations. 2Observe additionally that these re
ursions require to keep in memory all the sizes of thelevels of the previous step, whi
h requires a spa
e Θ(cmax). In most multiple 
riteria problems,the number of 
riteria is rather small and 
an thus assumed to be 
onstant. On the otherhand, values ci may be rather large. This makes this re
ursion qui
kly useless. This is themotivation to obtain a formula 
omputing the width of P whose 
omplexity does not dependon the values ci.3.2.2 An analyti
al formulaWe need to 
ompute the number of points on a level of maximum 
ardinality, whi
h amountsto 
omputing the number of integer solutions of the equation
x1 + ...+ xp = k (3)with k = ⌊h/2⌋, under the 
onstraints 0 ≤ xi ≤ ci.We re
all the following result, presented in standard textbooks on 
ombinatori
s su
h as[3℄, whi
h is a 
ombinatorial version of the in
lusion-ex
lusion prin
iple.Lemma 4. The number of integer solutions of equation (3) with the restri
tions

si ≤ xi ≤ mi, i = 1, . . . , pwhere si and mi are given for i = 1, . . . , p with s ≤ k ≤ m, s = s1 + . . . + sp and
m = m1 + . . . +mp, with ui = mi − si ≥ 0, i = 1, . . . , p is given by

(

p+ k − s− 1

p− 1

)

+

p
∑

r=1

(−1)r
∑

I⊆{1,...,p}:|I|=r

(

p+ k − s−
∑

i∈I ui − r − 1

p− 1

)Applied in our 
ontext, the previous lemma gives the following result.Theorem 2. The width α(P ) of a produ
t of 
hains P = (c1 + 1)× · · · × (cp + 1) is given bythe following formula:
α(P ) =

∑

I⊆{1,...,p}:|I|≤⌊h
2
⌋−cI

(−1)|I|
p−1
∏

k=1

(

1 +
⌊h/2⌋ − cI − |I|

k

) (4)where cI =
∑

i∈I ci and c∅ = 0.Proof : Using the formula of Lemma 4 with si = 0 and mi = ci for i = 1, . . . , p we obtainthe following formula:
α(P ) =

(

p+ ⌊h/2⌋ − 1

p− 1

)

+

p
∑

r=1

(−1)r
∑

I⊆{1,...,p}:|I|=r

(

p+ ⌊h/2⌋ −
∑

i∈I ci − r − 1

p− 1

)6



Combining the two members of this formula we have:
α(P ) =

∑

I⊆{1,...,p}:|I|≤⌊h
2
⌋−cI

(−1)|I|
(

p+ ⌊h/2⌋ − cI − |I| − 1

p− 1

)where cI = ∑

i∈I ci and c∅ = 0, whi
h 
an be rewritten as (4) using (nt) = 1
t!(n−t+1) . . . n.

2In the parti
ular 
ase where p = 3, the formula 
an be simpli�ed as follows.Corollary 2. If p = 3, we have
α(P ) =











(c2 + 1)(c3 + 1) if c1 ≥ c2 + c3

1 + (h2 )
2
+ h

2 −
c21+c22+c23

2 if c1 < c2 + c3 and h = c1 + c2 + c3 is even
1
2 + (h+1

2 )
2
−

c21+c22+c23
2 if c1 < c2 + c3 and h = c1 + c2 + c3 is oddMoreover, if ci = q, i = 1, 2, 3, we have

α(P ) =

{

3
4(q + 1)2 + 1

4 if q is even
3
4(q + 1)2 if q is oddProof : The �rst 
ase is a 
onsequen
e of Lemma 2. The se
ond and third 
ases are obtainedfrom formula (4), observing that the only subsets I ⊆ {1, 2, 3} su
h that |I| ≤ ⌊h/2⌋ − cI are

∅, {1}, {2}, and {3} when c1 < c2 + c3. 2The next lemma gives the 
omplexity for 
omputing α(P ), using (4).Lemma 5. The 
omputation of the width of a produ
t of 
hains P = (c1 + 1)× · · · × (cp + 1)using formula (4) is performed in O(p2p) operations.Proof : The produ
t ∏p−1
k=1(1 + ⌊h/2⌋−cI−|I|

k ) requires O(p) operations and the sum is over
O(2p) subsets, so the 
omputation of α(P ) needs O(p2p) operations. 2Thus, this 
omplexity is exponential in the number of 
riteria p, but does not depend onthe values ci. A
tually, sin
e p is usually small in pra
ti
e and thus 
onsidered 
onstant intheory, the previous dis
ussion 
an be summarized through the following result.Theorem 3. Max SizeND is solvable in 
onstant time when p is 
onstant.3.3 Comparison of the di�erent boundsWe propose to 
ompare α(P ) to simpler bounds on the number of non-dominated points. Letus �rst illustrate this 
omparison on a large instan
e of the tri-obje
tive Spanning Treeproblem. Let G = (V,E) be a 
omplete graph with n = 101 verti
es, where ea
h edge 
ost israndomly 
hosen between 0 and 10 on ea
h 
riterion. We wish to 
ompute, in the worst 
ase,the number of non-dominated points.Considering that for some instan
es all feasible solutions 
an give rise to di�erent non-dominated points [7℄, a �rst bound is the total number of spanning trees in a 
omplete graph,i.e. nn−2 = 10199. This huge bound, whi
h 
an be a
hieved only when edge 
osts are expo-nential, does not take a

ount of values ci.A se
ond bound 
orresponds to the produ
t ∏p

i=2(ci + 1), where c1 = c2 = c3 = 1000 and
p = 3 whi
h gives 10012 = 1.002.001. 7



Finally, our proposed bound, 
omputed from Corollary 2 with c1 = c2 = c3 = 1000, gives
3
4(1001)

2 + 1
4= 750.751.It is interesting to quantify the ratio between α(P ) and ∏p

i=2(ci + 1). The smallest ratiois rea
hed, as in the previous example, when all ci are equal. Let αp,q(P ) be the result ofthe formula whi
h 
omputes the maximal number of non-dominated points in the worst 
asewhen there are p 
riteria and for all i, ci = q − 1. Thus, we determine limq→∞ αp,q(P )/qp−1,where qp−1 
orresponds to the produ
t ∏p
i=2(ci + 1).Proposition 2. For p 
riteria, we have limq→∞

αp,q(P )
qp−1 =

∑⌈ p

2
⌉−1

l=1 −(1)l p
l!(p−l)!(

p
2 − l)p−1.Proof : Using formula (4) and keeping only the 
oe�
ients of the terms of degree p− 1.

2This way, we 
an 
ompute all these limits when p is �xed. For instan
e limq→∞
α3,q(P )

q2 = 3
4and limq→∞

α4,q(P )
q3

= 2
3 . When the number of 
riteria in
reases, we note that the proposedbound is more and more interesting, as 
ompared with the bound qp−1.4 Tightness of the bound for multi
riteria 
ombinatorial opti-mization problemsThe determination of the maximum number of non-dominated points is parti
ularly relevantfor multi
riteria 
ombinatorial optimization problems, for whi
h it is well-known that thisnumber 
an be exponential in the size of the instan
e [4℄. Considering su
h a problem Π, theproblem of determining the maximum 
ardinality of the non-dominated set asso
iated to Π,knowing values ci, i = 1, . . . , p, is denoted by Max SizeND Π in the following.We show in this part that our bound α(P ) is tight for the multi
riteria version of some
lassi
al optimization problems su
h as Sele
tion, Knapsa
k, Shortest Path, Span-ning Tree, TSP, s-t Cut. We propose some relatively simple families of instan
es of theseproblems where the number of non-dominated points is exa
tly α(P ).We �rst introdu
e some notations used in the de�nitions of these problems. Sele
tionand Knapsa
k require to de�ne a set O of obje
ts, a 
apa
ity b and a nonnegative integer

t. Ea
h obje
t o ∈ O has a 
riterion ve
tor v(o) = (v1(o), . . . , vp(o)) and a weight w(o). Wede�ne the 
riterion fun
tions on a set O′ ⊆ O as vi(O′) =
∑

o∈O′ vi(o) for all i ∈ {1, . . . , p}.Sele
tion 
onsists in sele
ting a subset O′ ⊆ O of t obje
ts maximizing vi(O
′), i =

1, . . . , p. Knapsa
k 
onsists in sele
ting a subset O′ ⊆ O satisfying the 
onstraint∑o∈O′ w(o) ≤
b maximizing vi(O

′), i = 1, . . . , p.The other problems are de�ned on a graph. Consider G = (V,E) a graph where V =
{1, . . . , n} is the set of verti
es and E ⊆ V × V is the set of edges. Ea
h edge e ∈ E has a
riterion ve
tor v(e) = (v1(e), . . . , vp(e)). We de�ne the value fun
tion v on a subset E′ of edgesas follows: v(E′) = (v1(E

′), . . . , vp(E
′)) where vi(E

′) =
∑

e∈E′ vi(e) for all i ∈ {1, . . . , p}.Proposition 3. The bound α(P ) is tight for Max SizeND Sele
tion and Max SizeNDKnapsa
k.Proof : Consider p integers c1, . . . , cp and p subsets Oj , j = 1, . . . , p, where ea
h subset Oj
ontains cj identi
al obje
ts oij , i = 1, . . . , cj with vj(o
i
j) = 1 and vk(o

i
j) = 0 for k 6= j. Let

O = ∪p
j=1Oj with |O| =

∑p
j=1 cj = n and t = ⌊n2 ⌋.8



Sele
ting t = ⌊n2 ⌋ = ⌊h2 ⌋ obje
ts 
an be seen as sele
ting xj obje
ts in subset Oj , j =

1, . . . , p su
h that ∑p
j=1 xj = ⌊h2 ⌋ and 0 ≤ xj ≤ cj , with a resulting non-dominated 
riterionve
tor (x1, x2, . . . , xp). The number of su
h ve
tors is the number of integer solutions ofequation (3) and thus 
orresponds to α(P ).Sin
e Sele
tion is a parti
ular 
ase of Knapsa
k, the result also holds forMax SizeNDKnapsa
k. 2Proposition 4. The bound α(P ) is tight for Max SizeND Shortest Path, Max SizeNDSpanning Tree, and Max SizeND TSP.Proof : Assume that p is even and let q be a nonnegative integer. We 
onsider the followinggadget 
onsisting of a graph with two verti
es, whi
h are 
onne
ted by edges 
orrespondingto all the p-tuples 
ontaining p/2 values 0 and p/2 values 1, with the 
orresponding values onthese edges (see Figure 1).

bc bc

(0, . . . , 0, 1, . . . , 1)

(1, . . . , 1, 0, . . . , 0)Figure 1: GadgetLet G be the 
on
atenation of q times this gadget (see Figure 2).
bc bc

(0, . . . , 0, 1, . . . , 1)

(1, . . . , 1, 0, . . . , 0)

bc bc

(0, . . . , 0, 1, . . . , 1)

(1, . . . , 1, 0, . . . , 0)

s tFigure 2: Graph GAny path between s and t in G uses exa
tly one edge of ea
h gadget and 
orresponds toa non-dominated point (v1, . . . , vp) with 0 ≤ vi ≤ q and ∑p
i=1 vi =

pq
2 . The number of su
hpoints is the number of integer solutions of equation (3), with ci = q, for i = 1, . . . , p, andthus 
orresponds to α(P ).Sin
e in the previous 
onstru
tion paths and spanning trees are equivalent, the proof holdsforMax SizeND Spanning Tree. Adding edge (s, t) to the above 
onstru
tion with 
riterionvalue (0, . . . , 0), the proof holds also for Max SizeND TSP. 2Proposition 5. The bound α(P ) is tight for Max SizeND s-t Cut.Proof : The proof is essentially the same as in Proposition 4 but using the following gadget
onsisting of a path whose edges 
orrespond to all the p-tuples 
ontaining p/2 values 0 and

p/2 values 1 (see Figure 3) and the following graph G (see Figure 4), where this gadget isdupli
ated q times, ea
h of these being 
onne
ted at ea
h end.9



bc bc bc bc bc bc(0, . . . , 0, 1, . . . , 1) (1, . . . , 1, 0, . . . , 0)Figure 3: Gadget
bc

bc

bc bc

bc

bc

bc
bc bc

bc

bc
bc bc

bc

bc

bc bc

bc

(0, . . . , 0, 1, . . . , 1) (1, . . . , 1, 0, . . . , 0)

(0, . . . , 0, 1, . . . , 1) (1, . . . , 1, 0, . . . , 0)

s t

Figure 4: Graph GIn the same way, we have ci = q for i = 1, . . . , p, and the number of non-dominated pointsis exa
tly α(P ). 25 Redu
tion of the maximal number of non-dominated pointsusing known feasible solutionsWe investigate now if it is possible to improve the upper bound on the number of non-dominated points when a subset of feasible solutions or a subset of e�
ient solutions is known.Indeed, feasible solutions 
an often be easily 
omputed. Moreover, supported e�
ient solutions,whi
h are obtained by optimizing a weighted sum of the 
riteria, are easily 
omputable, whenthe 
orresponding single 
riterion problem is polynomially solvable.The knowledge of feasible 
riterion ve
tors, possibly known to be non-dominated, involvesthe elimination of some points in P . More pre
isely, if a feasible point z is known, all the pointsdominated by z 
annot be part of the non-dominated set and 
an thus be removed from P .Moreover, if z is known to be non-dominated, we 
an also remove from P all the points whi
hdominate z. In the graph theory setting, this leads to subgraphs whi
h are still 
omparabilitygraphs. Therefore, the 
omputation of the maximal number of non-dominated points in this
ontext is still a
hievable in pseudo-polynomial time. We investigate the problem under theordered set theory setting.5.1 When feasible solutions are knownGiven P = (c1 + 1)× . . .× (cp + 1) and k points z1, . . . , zk in the 
riterion spa
e, representingfeasible solutions, let D be the subset of P dominated by at least one point from {z1, . . . , zk},that is the set of points y of P su
h that there is j ∈ {1, . . . , k} with zj ≤ y. We want tostudy if the set Q = P −D still satis�es the Sperner property and we want to 
ompute α(Q).
10



5.1.1 Case p = 2In the bi
riteria 
ase we have the following result.Proposition 6. When p = 2, Q satis�es the Sperner property and we have α(Q) = min(c2,mink
j=1r(z

j))+

1 where r(zj) is the rank of point zj.Proof : When there is no point in {z1, . . . , zk} lo
ated below the �rst level of maximum
ardinality of P we have α(Q) = α(P ) = c2 + 1. Otherwise, let L be the lowest level of P
ontaining an element of the set {z1, . . . , zk} and zm = (zm1 , zm2 ) su
h a point. Sin
e points zj ,
j 6= m, lo
ated above level L do not eliminate any point on L, we have α(Q) ≥ |L| = r(zm)+1.Consider now the set W ⊂ P of points belonging either to the 
hains 
ontaining all thepoints with a �rst 
onstant 
oordinate v1, for ea
h v1 ∈ {0, . . . , zm1 } or to the 
hains 
ontainingall the points with a se
ond 
onstant 
oordinate v2, for ea
h v2 ∈ {0, . . . , zm2 − 1}. We have
Q ⊂ W and we use |L| 
hains to 
over W . Therefore, any anti
hain of Q 
ontains at most |L|points, i.e. we have α(Q) ≤ |L| = r(zm) + 1.In any 
ase, α(Q) 
orresponds to the 
ardinality of a level of Q, meaning that Q satis�esthe Sperner property. 25.1.2 Case p ≥ 3When p ≥ 3, the observed stru
ture does not satisfy the Sperner property as will be shownin the next result. We observed in the bi
riteria 
ase that α(Q) is determined either from the�rst level of maximum 
ardinality or from the level of one of the points zj . We 
ould expe
tthat, for p ≥ 3, only these levels are relevant when 
omputing α(Q). Unfortunately, we alsoshow that other levels may 
ontribute to α(Q). This suggests that the determination of α(Q)is di�
ult.Proposition 7. For any p ≥ 3, Q does not satisfy the Sperner property. Moreover, other levelsthan the �rst level of maximum 
ardinality of P and levels of the points zj may 
ontribute to
α(Q).Proof : We �rst 
onstru
t a simple example with three 
riteria. Let P = 3 × 3 × 3 be theprodu
t of 
hains and z = (0, 1, 0) a known feasible solution (see Figure 5).

ut
zFigure 5: P = 3× 3× 311



ut
zFigure 6: The set Q = P −DThe set Q = P −D, represented in Figure 6, does not satisfy the Sperner property. Indeed,we have σ(Q) = |L1| = |L2| = 3, while α(Q) = |L2| + 1 = 4 sin
e point z, whi
h belongs tolevel L1, is in
omparable to the 3 points belonging to level L2. Observe that L2 is neither the�rst level of maximum 
ardinality of P (L3) nor the level of z (L1).This example 
an be extended easily to p ≥ 4 
riteria. We just need to extend z withvalues 0 on the p− 3 other 
riteria and add p− 3 new points zi, i = 1, . . . , p− 3, where zi has
oordinate 1 on 
riterion i+3 and 0 on the other 
riteria. Doing so, we obtain the same set Qas for p = 3 (ex
ept that points in Q have now all their p− 3 last 
oordinates equal to 0). 25.2 When e�
ient solutions are knownWe 
onsider now the same problem when the feasible solutions are known to be e�
ient.Given P = (c1 + 1)× . . .× (cp + 1) and k non-dominated points z1, . . . , zk in the 
riterionspa
e, representing e�
ient solutions, let D be the subset of P 
orresponding to the set ofpoints y of P su
h that there is j ∈ {1, . . . , k} with zj ≤ y or y ≤ zj . We are interested in
omputing α(Q), where Q = P −D.5.2.1 Case p = 2In this 
ase, the set Q does not satisfy the Sperner property. We illustrate this on an instan
ewhere P = 8 × 6, and two known non-dominated points z1 = (5, 1) and z2 = (1, 4) (seeFigure 7). Here Q 
onsists of the points represented by squares and the two points z1 and z2.A largest anti
hain in Q is {z1, z2, y1, . . . , y4} and thus we have α(Q) = 6, whereas σ(Q) = 4.We show, however, that Q\{z1, . . . , zk} is a disjoint union of produ
ts of two 
hains, whi
hallows the 
omputation of α(Q). We assume in this part that the k non-dominated points zj ,

j = 1, . . . , k are ranked by non in
reasing value on the �rst 
riterion, i.e. z11 ≥ . . . ≥ zk1 .Proposition 8. When p = 2, we have α(Q) = k + min(c1 − z11 , z
1
2) + min(zk1 , c2 − zk2 ) +

∑k−1
j=1 min(zj1 − zj+1

1 − 1, zj+1
2 − zj2 − 1).Proof : The �rst term k in the proposed formula 
orresponds to the k given non-dominatedpoints. These k points delimit exa
tly k + 1 disjoint produ
ts of two 
hains, some of thembeing possibly empty. The �rst produ
t of 
hains is of size c1 − z11 on the �rst 
riterion and

z12 on the se
ond one, the (k + 1)th produ
t of 
hains is of size zk1 on the �rst 
riterion and
c2 − zk2 on the se
ond one, whereas the produ
ts of 
hains lo
ated between two points zj and
zj+1 are of size zj1 − zj+1

1 − 1 on the �rst 
riterion and zj+1
2 − zj2 − 1 on the se
ond one. Ea
hpoint of any of these k + 1 produ
ts of 
hains is in
omparable with any point of any other12
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Figure 7: P = 8× 6produ
t and in
omparable with ea
h zj . Sin
e the width of a produ
t of two 
hains c1 × c2 is
min(c1, c2), the formula is proved. 2We remark that, to determine α(Q), we 
an 
onsider only non-dominated points lo
ated onthe levels whi
h 
ontain the known non-dominated points zj . Referring again to the instan
epresented in Figure 7, we illustrate this remark with the largest anti
hain {z1, z2, y1, . . . , y4}.5.2.2 Case p ≥ 3We observed in the bi
riteria 
ase that α(Q) is determined by 
onsidering points on the levelsof points zj . Unfortunately, for p ≥ 3, other levels may 
ontribute to α(Q), as shown in thenext result. This suggests that the determination of α(Q) is di�
ult.Proposition 9. For any p ≥ 3, other levels than the �rst level of maximum 
ardinality of Pand levels of the points zj may 
ontribute to α(Q).Proof : We 
onsider the same 
ounter-example as in the proof of Proposition 7 and Figure5. The set Q = P −D is represented in Figure 8.

ut
zFigure 8: The set Q = P −DWe have α(Q) = |L2|+1. Observe that L2 is neither the �rst level of maximum 
ardinalityof P (L3) nor the level of z (L1). 2
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6 Con
lusionsThe purpose of this work was to develop tight and easily 
omputable bounds on the 
ardi-nality of the set of non-dominated points. Graph theory and ordered set theory provided
omplementary insights on this topi
. Two main questions require further investigation.A basi
 assumption in our work is the a priori knowledge on the number of values takenon ea
h 
riterion. Obviously, obtaining a good upper bound on these values is itself a di�
ultquestion whi
h depends on the problem at hand as well as on the spe
i�
 instan
es.Knowing feasible, possibly e�
ient, solutions may improve our bound on the number ofnon-dominated points. The impa
t is 
lear in the bi
riteria 
ase. For p ≥ 3, ni
e properties(the Sperner property, the fa
t that only the levels of known points are relevant) are nolonger valid. Even if we know, from graph theory, that this upper bound 
an be 
omputed inpseudo-polynomial time, further stru
tural insights are still required.Referen
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