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Abstract

This work proposes an upper bound on the maximal number of non-dominated points of
a multicriteria optimization problem. Assuming that the number of values taken on each
criterion is known, the criterion space corresponds to a comparability graph or a product
of chains. Thus, the upper bound can be interpreted as the stability number of a compa-
rability graph or, equivalently, as the width of a product of chains. Standard approaches
or formulas for computing these numbers are impractical. We develop a practical formula
which only depends on the number of criteria. We also investigate the tightness of this
upper bound and the reduction of this bound when feasible, possibly efficient, solutions
are known.

Keywords: multicriteria optimization, non-dominated points, comparability graph, stability
number, product of chains, Sperner property.

1 Introduction

In multicriteria optimization, in opposition to single criterion optimization, there is typically
no optimal solution i.e. one that is best for all the criteria. Therefore, the standard situation
is that any solution can always be improved on at least one criterion. The solutions of interest,
called efficient solutions, are those such that any other solution which is better on one criterion
is necessarily worse on at least one other criterion. In other words, a solution is efficient if
its corresponding vector of criterion values is not dominated by any other vector of criterion
values corresponding to a feasible solution. These vectors, associated to efficient solutions, are
called non-dominated points. For many multicriteria optimization problems, one of the main
difficulties is the large cardinality of the set of non-dominated points, and the even larger
cardinality of the set of efficient solutions (considering that several solutions can have the
same image in the criterion space). However, similarly to single criterion optimization where
we usually look for one among all optimal solutions, we usually look for all non-dominated
points and a corresponding efficient solution for each such point. Thus, we can restrict our
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study to the set of non-dominated points. Even with this restriction, it is well-known, that
most multicriteria combinatorial optimization problems are intractable, in the sense that they
admit families of instances for which the number of non-dominated points is exponential in
the size of the instance [4]. This situation arises when the number of values taken on each
criterion is itself exponential in the size of the instance. It is thus interesting to investigate
the number of non-dominated points when we know (or have an upper bound on) the number
of values taken on each criterion. This problem can be stated within different theoretical
frameworks. Using graph theory, the maximal cardinality of a set of non-dominated points
corresponds to the stability number of a given graph. Using ordered set theory, this maximal
cardinality corresponds to the width of a product of chains. These two frameworks provide
different insights on our problem.

Up to our knowledge, this problem has not been dealt with, except very recently by
Stanojevic et al. in [9]. The best bound they give is obtained by a recursion formula which is
well-known in ordered set theory [8] and that we recall in our Proposition 1. Unfortunately, this
formula becomes quickly impractical when the number of values on each criterion increases.
One of our purposes is to provide an alternative formula which does not depend on these
numbers.

In the following section, we define the basic concepts and formalize the problem both in the
context of graphs and ordered sets. Then, in section 3, we deal with simple cases and provide,
in the general case, a formula using a combinatorial version of the inclusion-exclusion principle
[3]. The time for computing this formula is only exponential in the number of criteria. We
also make comparisons with other bounds which are easier to compute. In section 4, we show
that the proposed bound is tight for many classical multicriteria optimization problems. In
section 5, we try to reduce the maximal number of non-dominated points using known feasible
solutions, possibly efficient. We conclude with some possible extensions to this work.

2 Basic concepts and problem statements

2.1 Basic concepts

In this paper, we consider multicriteria optimization problems formulated as:

min{fl($)"'-)fp($)}’ (1)
z€S
where fi,..., fp, are p > 2 criteria functions to be minimized and S is the set of feasible

solutions.

We distinguish the decision space X which contains the set S of feasible solutions from
the criterion space Y C RP which contains the criterion vectors associated to these solutions.
We denote by f(x) = (fi(x),..., fp(z)) the feasible point associated to a feasible solution
xz € S, and by Z = f(S) the set of images of the feasible solutions. We define in the criterion
space Y, the following partial strict order, denoted by <, such that for any y,y/ € Y,y < ¢/
ify; <yl forallie{1,...,p} and y # v/. Relation < corresponds to the standard dominance
relation used in multicriteria optimization.

Then we define efficient solutions and non-dominated points, respectively, in the decision
space X and in the criterion space Y, as follows:



Definition 1. A feasible solution x € S is called efficient if there is no other feasible solution
' € S such that f(z') < f(z). We denote by Sgyss the set of efficient solutions. If x is
efficient, f(x) is a non-dominated point in the criterion space, and let Zyp = f(Sgyf).

In this context formulation (1) means that we aim at generating the set of all non-
dominated points and a corresponding efficient solution for each such point.

In this paper, we assume that f; can take up to ¢; + 1 values, where ¢; is a nonnegative
integer. Thus, we consider, without loss of generality, that each f; can take integer values
between 0 and ¢;, 1 =1,...,p.

In some cases, the ¢; values are known precisely, e.g. for qualitative criteria which take
values on a scale whose grades correspond to predefined judgements. In other cases, these
values can only be approximated. For instance, assuming that criterion functions are integer-
valued, we can find an upper bound on ¢; by computing the coordinates of the ideal and
anti-ideal points, corresponding, respectively, to the best and the worst possible values on
each criterion. Better bounds can be given if we can compute the coordinates of the nadir
point, which corresponds to the worst possible values over the set of non-dominated points.
Unfortunately, this is not easy in general, especially when the number of criteria is at least 3 [5].

The problem of determining the maximum cardinality of the non-dominated set can be
stated as follows.

Max SizeND

Input: an integer p and p integers ¢;, ¢ = 1,...,p.

Output: maximum cardinality of the non-dominated set Zyp associated to a set Z of p-
dimensional points such that at most ¢; + 1 values are taken on the ¥ dimension, i = 1,...,p.

Let (¢; +1)={0,...,¢},i=1,...,pand P=(c; +1) x ... X (¢, + 1). Any relevant set
Z, and in particular any of those leading to a non-dominated set of maximum cardinality, is
included in P.

2.2 Statement as a graph theory problem

Consider the graph G = (P, E') whose set of vertices is P = (¢ +1) X ... x (¢, + 1) and set
of edges is F = {(u,v) € P x P :u < wv}. By construction, G is a comparability graph (i.e. a
graph that admits a transitive orientation), since relation < is transitive.

In this context, determining the maximum number of non-dominated points amounts to
determining the maximum cardinality of a stable set in G, i.e. computing a(G), the stability
number of G. It is well-known that a(G) can be determined in polynomial time when G is
a comparability graph [6]. In our case, this is achieved by computing a minimum flow in the
digraph G’ = (P, <) from (0,...,0) to (¢1,...,¢p) where each vertex has a lower bound of 1.
Then «(G) corresponds to the value of this minimum flow in G'.

Computing a minimum flow in G’ can be performed in a time polynomial in the number
of vertices P = [[*_;(¢; + 1). Since the input of MAX SizeEND is not G’ but only values
c1,.-.,Cp, which are encoded in binary, this approach only gives us a pseudo-polynomial time
algorithm to solve MAX S1ZEND.

2.3 Statement as an ordered set theory problem

Given a partially ordered set (S, R), we recall that a chain is a totally ordered subset and
an antichain is a subset whose elements are pairwise incomparable. Moreover, the height of



(S, R), denoted by h(S), is the maximal cardinality of a chain in S, and the width of (S, R),
denoted by a(S), is the maximal cardinality of an antichain in S. (S, R) is said to be ranked
if we can define a function r such that for any x,y € .S, whenever xRy and there is no element
z € S such that xRzRy, we have r(y) = r(x) + 1. Calling Ly the level of rank k in S, i.e.
the subset of elements of S with rank k, we define ny = |Li| and o(S) = maxny. Since the
levels are antichains, we have «(S) > o(S). Finally, a partially ordered ranked set S is said
to satisfy the Sperner property if a(S) = o(S) [2].

In our case, P = (c; + 1) X ... X (¢, + 1), which is a product of chains, is partially ordered
by the dominance relation <. The resulting partially ordered set (P, <) has height h(P) =
> b _ick (denoted for short by h in the following). Moreover, (P, <) can be ranked using rank
function r which associates to each element (y1,...,yp) € P its rank r(yi,...,Yp) = > r_1 Y-

In this context, solving MAX S1ZEND is equivalent to determining the width «(P). We
recall the following result.

Theorem 1. (De Bruijn et al. [1]) A product of chains satisfies the Sperner property.

Therefore, since P is a product of chains, we have a(P) = o(P). Thus, we are interested
in determining the cardinality of a level of P which has the largest number of elements. It
is well-known that the levels of maximum cardinality are all centered around the level Ly, o
if h is even, and the levels Lg,_1)/ and Lj41y/2 if b is odd [2, 8]. Thus, determining a(P)
amounts to computing k.

Leclerc [8] and Caspar et al. [2] proposed induction formulas to compute k- Neverthe-
less, these induction formulas depend on p but also on the values ¢;, ¢ = 1,...,p. Since the
values ¢; may often be large, these formulas are not really usable in practice, as acknowledged
by the previous authors. This is, however, another pseudo-polynomial time method to solve
Max Si1zeND. The motivation is to obtain a new more practical formula, the complexity of
which does not depend on the values ¢;, that is a strongly polynomial time algorithm.

3 Computation of the width of a product of chains

We first provide an upper bound on the width of a product of chains P, showing that this
bound is tight in a special case, which includes the bicriteria case. Then, we propose and
compare two formulas for computing exactly a(P).

We assume w.l.o.g. that the criteria are numbered by non-increasing order of values c;,
that is c1 > ... > ¢p.

3.1 A simple upper bound on «(P)
A first simple upper bound on «(P) is given by the following result.
Lemma 1. o(P) <[V _,(c;i +1).

Proof: By contradiction, if a(P) > [[¥_,(¢; + 1) there exist at least two non-dominated
points with the same values on criteria f;, ¢ = 2,...,p. Then, among these two points, the
point with a worse value on f; is dominated by the other one. O

This upper bound is tight in a particular case, as shown in the following lemma:



Lemma 2. o(P) =[['_5(ci + 1) if and only if c1 > >0 sc;.

Proof:

< If ¢4 > 3P ,¢; then all possible [[_5(¢; + 1) configurations on the last p — 1 criteria
can be completed on criterion f so as to define non-dominated points. Indeed, any point with
value v; on criterion f;, j = 2,...,p is non-dominated if it is assigned the (nonnegative) value
P hci — > P ,vj on criterion fi.

= If a(P) = [[¥_5(ci + 1), all possible configurations on the last p — 1 criteria must
correspond to non-dominated points. In particular, the 7 _,¢; + 1 following configurations,
which constitute a chain on the last p — 1 criteria, must correspond to non-dominated points:

(,0,...,0),(%,1,0,...,0),...,(*,¢2,0,...,0),

(%,02,1,0,...,0),...,(*,¢2,¢3,0,...,0),

(%,¢2,€3, ..., Cp—1,1),..., (%, c2,¢3,...,Cp—1,Cp)
For this chain on the last p — 1 criteria to become an antichain on the p criteria, we need
P ,ci + 1 different values on criterion fi, and thus ¢; > > 2 ,¢;. O

In the particular case where p = 2, we obtain the following corollary, since ¢; > co.

Corollary 1. If p =2, we have o(P) = ¢y + 1.

3.2 Exact computation of «o(P)

Since P satisfies the Sperner property, we noticed at the end of section 2.3 that a(P) = N
2

We first review a well-known recursion formula for computing nin, which is not practicable

as values ¢; grow. Then, we propose an alternative analytical formula, which is shown to be

much easier to implement.
3.2.1 A recursion formula
As indicated in [8], the following result is known from "folklore".

Proposition 1. Let P' = P x (¢ + 1) where P is a product of chains. The values n), the size
of level of rank k in P’, can be obtained from values ny by the following recursion:

C
/
nk = E Ng—4
=0
which can be rewritten as
/ /!
N = Np_1 + Nk — Nk—ec—1 (2)

where ng, = 1, for all k > 0 when P is a chain and ny =0 for k < 0.

As outlined in 8], this recursion is relevant in practice only for a small number of criteria
and small values ¢;. More precisely, the complexity of this induction formula is given by the
following result.

Lemma 3. The computation of the width of the product of chains P = (c1+1) x ... X
(cp + 1) using formula (2) of Proposition 1 is done in ©(p*cpas) operations, where Cimaz =
max{ci,...,cp}.



Proof: At each step i of the recursion for ¢ = 1,...,p, the computation of the cardinality
of ((Z‘;’:p_(i_l) ¢j) + 1)/2 levels is needed. Since each of these cardinalities is computed

in constant time, the computation of a(P) is performed in ((3-7_;ic;) + p)/2 = O(p*Cimaz)
operations. O

Observe additionally that these recursions require to keep in memory all the sizes of the
levels of the previous step, which requires a space O (¢pqz ). In most multiple criteria problems,
the number of criteria is rather small and can thus assumed to be constant. On the other
hand, values ¢; may be rather large. This makes this recursion quickly useless. This is the
motivation to obtain a formula computing the width of P whose complexity does not depend
on the values ¢;.

3.2.2 An analytical formula

We need to compute the number of points on a level of maximum cardinality, which amounts
to computing the number of integer solutions of the equation

$1+...+$p:k‘ (3)

with & = |h/2], under the constraints 0 < x; < ¢;.

We recall the following result, presented in standard textbooks on combinatorics such as
[3], which is a combinatorial version of the inclusion-exclusion principle.

Lemma 4. The number of integer solutions of equation (3) with the restrictions

s; <z < my, Zzlaup

where s; and m; are given for i = 1,...,p with s < k < m, s = sy + ...+ 5, and
m=mq+...+my, withu, =m; —s; >0, 1=1,...,p is given by
P
T )
P r=1 IC{L,...p}|I|=r P

Applied in our context, the previous lemma gives the following result.

Theorem 2. The width o(P) of a product of chains P = (¢1 +1) x --- x (¢p + 1) is given by
the following formula:

p—1
a(P) = Z (_1)\I| H (1 i Lh/2] _kCI - |I|> (4)
k=1

IC{L,p}l <[ 2] —cr

where c; =) ;¢ and cg = 0.

Proof: Using the formula of Lemma 4 with s; = 0 and m; = ¢; for ¢ = 1,...,p we obtain
the following formula:

ap) = ("I DS (1 W2 Sere =)

p—1 r=1 IC{1,...p}:|I|=r p-1



Combining the two members of this formula we have:
_ o (p 2] — e — 1] -1
o(P) > (e
IC{1,...p} <[ 5] —cs

where c; = 3°,; ¢; and ¢ = 0, which can be rewritten as (4) using () = &(n—t+1)...

S

In the particular case where p = 3, the formula can be simplified as follows.

Corollary 2. If p =3, we have

(co+1)(es+1) if c1 > co+c3
2 2 2
a(P) = 1+(%)2+%—% if cp < cg+c3 and h = c1 + ¢ + c3 1s even
1 (ht1y2 _ i+ _ .
5 + (=) 3 if 1 < ca+c3 and h = c1 + cg + 3 is odd

Moreover, if ¢; = q,t = 1,2,3, we have
o(P) %(q+1)2+i if q is even
T 3(g+1)? if q is odd

Proof: The first case is a consequence of Lemma 2. The second and third cases are obtained
from formula (4), observing that the only subsets I C {1,2,3} such that |I| < |h/2| — ¢ are
@, {1},{2}, and {3} when ¢; < ¢ + 3. O

The next lemma gives the complexity for computing «(P), using (4).

Lemma 5. The computation of the width of a product of chains P = (¢; +1) X --- x (¢p + 1)
using formula (4) is performed in O(p2P) operations.

Proof: The product Hi;i(l + M) requires O(p) operations and the sum is over
O(2P) subsets, so the computation of a(P) needs O(p2P) operations. O

Thus, this complexity is exponential in the number of criteria p, but does not depend on
the values ¢;. Actually, since p is usually small in practice and thus considered constant in
theory, the previous discussion can be summarized through the following result.

Theorem 3. MAX SiZEND is solvable in constant time when p is constant.

3.3 Comparison of the different bounds

We propose to compare a(P) to simpler bounds on the number of non-dominated points. Let
us first illustrate this comparison on a large instance of the tri-objective SPANNING TREE
problem. Let G = (V, E) be a complete graph with n = 101 vertices, where each edge cost is
randomly chosen between 0 and 10 on each criterion. We wish to compute, in the worst case,
the number of non-dominated points.

Counsidering that for some instances all feasible solutions can give rise to different non-
dominated points [7], a first bound is the total number of spanning trees in a complete graph,
i.e. n"~2 = 101%°. This huge bound, which can be achieved only when edge costs are expo-
nential, does not take account of values ¢;.

A second bound corresponds to the product [T%_,(c; + 1), where ¢; = ¢o = ¢3 = 1000 and
p = 3 which gives 1001? = 1.002.001.



Finally, our proposed bound, computed from Corollary 2 with ¢; = ¢o = ¢3 = 1000, gives
3(1001)% + §= 750.751.

It is interesting to quantify the ratio between a(P) and [[i_,(c; + 1). The smallest ratio
is reached, as in the previous example, when all ¢; are equal. Let oy 4(P) be the result of
the formula which computes the maximal number of non-dominated points in the worst case
when there are p criteria and for all 4, ¢; = ¢ — 1. Thus, we determine lim, s oy 4(P)/¢?~ 1,
where ¢P~! corresponds to the product Hsz(ci +1).

.
Proposition 2. For p criteria, we have limg_,o ag'pq,(f) = L?l ! —(1)lm(§ —rL,

Proof: Using formula (4) and keeping only the coefficients of the terms of degree p — 1.

O
This way, we can compute all these limits when p is fixed. For instance lim;,« O‘L'SQ@ = %
and limg_, a4'§3(P) = % When the number of criteria increases, we note that the proposed

bound is more and more interesting, as compared with the bound ¢?~'.

4 Tightness of the bound for multicriteria combinatorial opti-
mization problems

The determination of the maximum number of non-dominated points is particularly relevant
for multicriteria combinatorial optimization problems, for which it is well-known that this
number can be exponential in the size of the instance [4|. Considering such a problem II, the
problem of determining the maximum cardinality of the non-dominated set associated to II,
knowing values ¢;, ¢ = 1,...,p, is denoted by MAx SizEND 1I in the following.

We show in this part that our bound «(P) is tight for the multicriteria version of some
classical optimization problems such as SELECTION, KNAPSACK, SHORTEST PATH, SPAN-
NING TREE, TSP, s-t CuT. We propose some relatively simple families of instances of these
problems where the number of non-dominated points is exactly a(P).

We first introduce some notations used in the definitions of these problems. SELECTION
and KNAPSACK require to define a set O of objects, a capacity b and a nonnegative integer
t. Each object 0o € O has a criterion vector v(0) = (vi(0),...,vp(0)) and a weight w(o). We
define the criterion functions on a set O’ C O as v;(0') =Y o/ vi(o) for all i € {1,...,p}.

SELECTION consists in selecting a subset O’ C O of ¢t objects maximizing v;(0’), i =
1,...,p. KNAPSACK consists in selecting a subset O" C O satisfying the constraint )~ . w(0) <
b maximizing v;(O'), i =1,...,p.

The other problems are defined on a graph. Consider G = (V, E) a graph where V =
{1,...,n} is the set of vertices and E C V x V is the set of edges. Each edge e € F has a
criterion vector v(e) = (vi(e), ..., vp(e)). We define the value function v on a subset E’ of edges
as follows: v(E') = (vi(E'),...,vp(E")) where v;(E") =3 cpvi(e) for all i € {1,...,p}.

Proposition 3. The bound o(P) is tight for MAX S1ZEND SELECTION and MAX SizEND
KNAPSACK.

Proof: Consider p integers c1,...,c, and p subsets O;, j = 1,...,p, where each subset O;
contains ¢; identical objects o},i = 1,...,¢; with v;(0j) = 1 and vg(0}) = 0 for k # j. Let
O =U,_,0; with |O| =3""_ cj=nand t = [5].



Selecting t = 5] = L%J objects can be seen as selecting x; objects in subset O;, j =

1,...,p such that 3°%_, x; = |4] and 0 < z; < ¢;, with a resulting non-dominated criterion
vector (z1,x2,...,%p). The number of such vectors is the number of integer solutions of
equation (3) and thus corresponds to a(P).

Since SELECTION is a particular case of KNAPSACK, the result also holds for MAX SizeND
KNAPSACK. O

Proposition 4. The bound «(P) is tight for MAX SIZEND SHORTEST PATH, MAX SiZEND
SPANNING TREE, and MAX SiZzeND TSP.

Proof: Assume that pis even and let ¢ be a nonnegative integer. We consider the following
gadget consisting of a graph with two vertices, which are connected by edges corresponding
to all the p-tuples containing p/2 values 0 and p/2 values 1, with the corresponding values on
these edges (see Figure 1).

..., 1,0,..., 0)
Figure 1: Gadget

Let G be the concatenation of ¢ times this gadget (see Figure 2).

0,..., 0,1,..., 1) 0,..., 0,1,..., 1)

a,..., 1,0,..., 0) a,..., 1,0,..., 0)
Figure 2: Graph G

Any path between s and t in G uses exactly one edge of each gadget and corresponds to
a non-dominated point (v1,...,vp) with 0 < v; < g and Y7, v; = &L, The number of such
points is the number of integer solutions of equation (3), with ¢; = ¢, for i = 1,...,p, and
thus corresponds to «(P).

Since in the previous construction paths and spanning trees are equivalent, the proof holds
for MAX S1ZEND SPANNING TREE. Adding edge (s,t) to the above construction with criterion
value (0,...,0), the proof holds also for MAx SizeND TSP. O

Proposition 5. The bound «(P) is tight for MAX S1ZEND s-t CuT.

Proof: The proof is essentially the same as in Proposition 4 but using the following gadget
consisting of a path whose edges correspond to all the p-tuples containing p/2 values 0 and
p/2 values 1 (see Figure 3) and the following graph G (see Figure 4), where this gadget is
duplicated ¢ times, each of these being connected at each end.



Figure 4: Graph G

In the same way, we have ¢; = ¢ for ¢ = 1,...,p, and the number of non-dominated points
is exactly a(P). O

5 Reduction of the maximal number of non-dominated points
using known feasible solutions

We investigate now if it is possible to improve the upper bound on the number of non-
dominated points when a subset of feasible solutions or a subset of efficient solutions is known.
Indeed, feasible solutions can often be easily computed. Moreover, supported efficient solutions,
which are obtained by optimizing a weighted sum of the criteria, are easily computable, when
the corresponding single criterion problem is polynomially solvable.

The knowledge of feasible criterion vectors, possibly known to be non-dominated, involves
the elimination of some points in P. More precisely, if a feasible point z is known, all the points
dominated by z cannot be part of the non-dominated set and can thus be removed from P.
Moreover, if z is known to be non-dominated, we can also remove from P all the points which
dominate z. In the graph theory setting, this leads to subgraphs which are still comparability
graphs. Therefore, the computation of the maximal number of non-dominated points in this
context is still achievable in pseudo-polynomial time. We investigate the problem under the
ordered set theory setting.

5.1 When feasible solutions are known

Given P = (c; + 1) x...x (¢, + 1) and k points z', ..., 2" in the criterion space, representing
feasible solutions, let D be the subset of P dominated by at least one point from {z',..., 2},
that is the set of points y of P such that there is j € {1,...,k} with 2/ < y. We want to
study if the set Q = P — D still satisfies the Sperner property and we want to compute «(Q).

10



5.1.1 Case p=2

In the bicriteria case we have the following result.

Proposition 6. When p = 2, Q satisfies the Sperner property and we have a(Q) = min(ca, mz’n?:lr(zj))—k
1 where 7(27) is the rank of point 7.

Proof: When there is no point in {z!,... ,zk} located below the first level of maximum
cardinality of P we have a(Q) = a(P) = c2 + 1. Otherwise, let L be the lowest level of P
containing an element of the set {z',..., 2} and 2™ = (2], 25") such a point. Since points 27,
J # m, located above level L do not eliminate any point on L, we have a(Q) > |L| = r(z™)+1.

Consider now the set W C P of points belonging either to the chains containing all the
points with a first constant coordinate v, for each vy € {0, ..., 2"} or to the chains containing
all the points with a second constant coordinate v, for each ve € {0,..., 25" —1}. We have
@ C W and we use |L| chains to cover W. Therefore, any antichain of @ contains at most ||
points, i.e. we have a(Q) < |L| = r(2™) + 1.

In any case, a(Q) corresponds to the cardinality of a level of (), meaning that ) satisfies
the Sperner property. O

5.1.2 Casep>3

When p > 3, the observed structure does not satisfy the Sperner property as will be shown
in the next result. We observed in the bicriteria case that «(Q) is determined either from the
first level of maximum cardinality or from the level of one of the points z/. We could expect
that, for p > 3, only these levels are relevant when computing a(@). Unfortunately, we also
show that other levels may contribute to a(@Q). This suggests that the determination of «(Q)
is difficult.

Proposition 7. For anyp > 3, QQ does not satisfy the Sperner property. Moreover, other levels
than the first level of mazimum cardinality of P and levels of the points 27 may contribute to

a(Q).

Proof: We first construct a simple example with three criteria. Let P = 3 x 3 x 3 be the
product of chains and z = (0, 1,0) a known feasible solution (see Figure 5).

Figure 5: P=3x 3 x 3

11



Figure 6: The set Q = P — D

The set Q = P— D, represented in Figure 6, does not satisfy the Sperner property. Indeed,
we have 0(Q) = |L1| = |L2| = 3, while a(Q) = |L2| + 1 = 4 since point z, which belongs to
level Ly, is incomparable to the 3 points belonging to level Lo. Observe that Lo is neither the
first level of maximum cardinality of P (L3) nor the level of z (L).

This example can be extended easily to p > 4 criteria. We just need to extend z with
values 0 on the p — 3 other criteria and add p — 3 new points 2%, i = 1,...,p — 3, where 2’ has
coordinate 1 on criterion ¢+ 3 and 0 on the other criteria. Doing so, we obtain the same set Q
as for p = 3 (except that points in @ have now all their p — 3 last coordinates equal to 0). O

5.2 When efficient solutions are known

We consider now the same problem when the feasible solutions are known to be efficient.

Given P = (c; + 1) X ... x (¢, + 1) and k non-dominated points z', ..., 2" in the criterion
space, representing efficient solutions, let D be the subset of P corresponding to the set of
points y of P such that there is j € {1,...,k} with 2/ <y or y < 2/. We are interested in
computing «(Q), where Q = P — D.

5.2.1 Case p=2

In this case, the set () does not satisfy the Sperner property. We illustrate this on an instance
where P = 8 x 6, and two known non-dominated points z! = (5,1) and 2?2 = (1,4) (see
Figure 7). Here Q consists of the points represented by squares and the two points 2! and 2.
A largest antichain in Q is {z', 2%, y',...,y*} and thus we have a(Q) = 6, whereas o(Q) = 4.

We show, however, that Q\{z', ..., 2"} is a disjoint union of products of two chains, which
allows the computation of a(Q). We assume in this part that the k£ non-dominated points 27,
j=1,...,k are ranked by non increasing value on the first criterion, i.e. z% > zf.

Proposition 8. When p = 2, we have o(Q) = k + min(c; — 2{,23) + min(zf,co — 25) +

St min(z — AT -1, - 1),

Proof: The first term k in the proposed formula corresponds to the £ given non-dominated
points. These k points delimit exactly k£ 4 1 disjoint products of two chains, some of them
being possibly empty. The first product of chains is of size ¢; — 2} on the first criterion and
23 on the second one, the (k + 1)™ product of chains is of size z¥ on the first criterion and
co — z§ on the second one, whereas the products of chains located between two points 27 and
2071 are of size 27 — z{H — 1 on the first criterion and ng — zg — 1 on the second one. Each

point of any of these k 4+ 1 products of chains is incomparable with any point of any other
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Figure 7: P =8 x 6

product and incomparable with each 2. Since the width of a product of two chains &1 x &3 is
min(cy, ¢2), the formula is proved. O

We remark that, to determine « (@), we can consider only non-dominated points located on
the levels which contain the known non-dominated points z/. Referring again to the instance
presented in Figure 7, we illustrate this remark with the largest antichain {z',22,9',... 9%}

5.2.2 Casep>3

We observed in the bicriteria case that «(Q) is determined by considering points on the levels
of points z7. Unfortunately, for p > 3, other levels may contribute to a(Q), as shown in the
next result. This suggests that the determination of «(Q) is difficult.

Proposition 9. For any p > 3, other levels than the first level of mazimum cardinality of P
and levels of the points 2/ may contribute to a(Q).

Proof: We consider the same counter-example as in the proof of Proposition 7 and Figure
5. The set Q = P — D is represented in Figure 8.

Az

\I//
\/

q//
Figure 8: The set Q = P — D

We have a(Q) = |La|+1. Observe that Lo is neither the first level of maximum cardinality
of P (Ls3) nor the level of z (Ly). O
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6 Conclusions

The purpose of this work was to develop tight and easily computable bounds on the cardi-
nality of the set of non-dominated points. Graph theory and ordered set theory provided
complementary insights on this topic. Two main questions require further investigation.

A basic assumption in our work is the a priori knowledge on the number of values taken
on each criterion. Obviously, obtaining a good upper bound on these values is itself a difficult
question which depends on the problem at hand as well as on the specific instances.

Knowing feasible, possibly efficient, solutions may improve our bound on the number of
non-dominated points. The impact is clear in the bicriteria case. For p > 3, nice properties
(the Sperner property, the fact that only the levels of known points are relevant) are no
longer valid. Even if we know, from graph theory, that this upper bound can be computed in
pseudo-polynomial time, further structural insights are still required.
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