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Abstract
Determining the complexity of perfect information
trick-taking card games is a long standing open prob-
lem. This question is worth addressing not only
because of the popularity of these games among hu-
man players, e.g., DOUBLE DUMMY BRIDGE, but
also because of its practical importance as a building
block in state-of-the-art playing engines for CON-
TRACT BRIDGE, SKAT, HEARTS, and SPADES.
We define a general class of perfect information two-
player trick-taking card games dealing with arbitrary
numbers of hands, suits, and suit lengths. We inves-
tigate the complexity of determining the winner in
various fragments of this game class.
Our main result is a proof of PSPACE-completeness
for a fragment with bounded number of hands,
through a reduction from Generalized Geography.
Combining our results with Wästlund’s tractabil-
ity results gives further insight in the complexity
landscape of trick-taking card games.

1 Introduction
Determining the complexity class of games is a popular re-
search topic [Hearn, 2006], even more so when the problem
has been open for some time and the game is actually of in-
terest to players and researchers. For instance, the game of
AMAZONS was proved PSPACE-complete by three different
research groups almost simultaneously [Furtak et al., 2005;
Hearn, 2006]. In this paper, we investigate the complexity of
trick-taking card games. The class of trick-taking card games
encompasses numerous popular games such as CONTRACT
BRIDGE, HEARTS, SKAT, SPADES, TAROT, and WHIST.1

The rules of the quintessential trick-taking card game are
fairly simple. A set of players is partitioned into teams and
arranged around a table. Each player is dealt a given number
of cards t called hand, each card being identified by a suit and
a rank. The game consists in t tricks in which every player
plays a card. The first player to play in a given trick is called
lead, and the other players proceed in the order defined by the
seating. The single constraint is that players should follow the

1A detailed description of these games and many other can be
found on http://www.pagat.com/class/trick.html.

lead suit if possible. At the end of a trick, whoever put the
highest ranked card in the lead suit wins the trick and leads the
next trick. When there are no cards remaining, after t tricks,
we count the number of tricks each team won to determine the
winner.2

Assuming that all hands are visible to everybody, is there a
strategy for the team of the starting player to ensure winning
at least k tricks?

Despite the demonstrated interest of the general popu-
lation in trick-taking card games and the significant body
of artificial intelligence research on various trick-taking
card games [Buro et al., 2009; Ginsberg, 2001; Frank and
Basin, 1998; Kupferschmid and Helmert, 2006; Luštrek
et al., 2003], most of the corresponding complexity prob-
lems remain open. This stands in stark contrast with other
popular games such as CHESS or GO, the complexity of
which was established early [Fraenkel and Lichtenstein, 1981;
Lichtenstein and Sipser, 1980; Robson, 1983].

There are indeed very few published hardness results for
card games. We only know of a recent paper addressing
UNO [Demaine et al., 2010], a card game not belonging to the
category of trick-taking card games, and Frank and Basin’s
result on the best defense model [2001]. They show that given
an imperfect information game tree and an integer w, and
assuming the opponent has perfect information, determining
whether one has a pure strategy winning in at least w worlds
is NP-complete.

As for tractability, after a few heuristics were pro-
posed [Kahn et al., 1987], Wästlund’s performed an in-depth
combinatorial study on fragments of perfect information
two-hands WHIST proving that some important fragments of
trick-taking card games are polynomial [Wästlund, 2005a;
2005b].

Note that contrary to the hypotheses needed for Frank and
Basin’s NP-completeness result [2001], this paper assumes
perfect information and a compact input, namely the hands
and an integer k. There are several reasons for focusing on
perfect information. First, it provides a lower bound to the
imperfect information case when compact input is assumed.
More importantly, perfect information trick-taking card games

2There are more elaborate point-based variants where tricks might
have different values, possibly negative, based on cards comprising
them. We focus on the special case where each card has the same
positive value.



h1 ?
s1 4
s2 K
s3 A

h2

s1 K Q
s2 A
s3 —

h3

s1 A J
s2 2
s3 —

h4

s1 —
s2 Q
s3 K Q

Figure 1: Example of a trick-taking game position with 4
hands, 3 suits, and 1 as lead turn. If team A controls h1 and
h3 and team B controls h2 and h4, then team A can make all
three remaining tricks by starting with (s3, A)

actually do appear in practice, both among the general popula-
tion in the form of DOUBLE DUMMY BRIDGE problems, but
also in research as perfect information Monte Carlo sampling
is used as a base component of virtually every state-of-the-
art trick-taking game engine [Levy, 1989; Ginsberg, 2001;
Sturtevant and White, 2006; Long et al., 2010].

It is rather natural to define fragments of this class of deci-
sion problems, for instance, by limiting the number of different
suits, the number of hands, or even limiting the number of
cards within each suit. We define the lattice of such fragments
in Section 2. In Section 3, we show that the general problem
is PSPACE-complete and it remains so even if we bound the
number of cards per suit. The proof is a rather straightforward
reduction from Generalized Geography (GG). Our main result
is a more involved reduction from GG to address the fragment
with bounded number of hands; it is presented in Section 4. In
Section 5, we provide a new tractability result for two hands
and four cards per suit. We conclude by providing a graphi-
cal summary of the complexity landscape in trick-taking card
games and putting forward a few open problems.

2 Definitions and notation
2.1 Trick-taking game
Definition 1. A card c is a pair of two integers representing
a suit (or color) s(c) and a rank r(c). A position p is defined
by a tuple of hands h = (h1, . . . , hη), where a hand is a
set of cards, and a lead turn τ ∈ [1, η]. We further assume
that all hands in a given position have the same size ∀i, j ∈
[1, η], |hi| = |hj | and do not overlap: i 6= j ⇒ hi ∩ hj = ∅.

An example position with 4 hands and 12 total cards is
given in Figure 1. The position is written as a diagram, so for
instance, hand h3 contains 3 cards {(s1,A), (s1,J), (s2, 2)}.
Definition 2. Playing a trick consists in selecting one card
from each hand starting from the lead: cτ ∈ hτ , cτ+1 ∈
hτ+1, . . . , cn ∈ hη, c1 ∈ h1, . . . , cτ−1 ∈ hτ−1. We also
require that suits are followed, i.e., each played card has
the same suit as the first card played by hand τ or the
corresponding hand hi does not have any card in this suit:
s(ci) = s(cτ ) ∨ ∀c ∈ hi, s(c) 6= s(cτ ).
Definition 3. The winner of a trick is the index correspond-
ing to the card with highest rank among those having the
required suit. The position resulting from a trick with cards

C = {cτ , . . . , cτ−1} played in a position p can be obtained
by removing the selected cards from the hands and setting the
new lead to the winner of the trick.

In the example in Figure 1, the lead is to 1. A possible trick
would be (s3,A), (s1,Q), (s2, 2), (s3,Q); note that only hand
h4 can follow suit, and that 1 is the winner so remains lead.

Definition 4. A team mapping σ is a map from [1 . . . η] to
{A,B} where η is the number of hands. A (perfect informa-
tion, plain) trick-taking game is pair consisting of a position
and a team mapping σ.

For simplicity of notation, team mappings will be written as
words over the alphabet {A,B}. For instance, 1 7→ A, 2 7→
B, 3 7→ A, 4 7→ B is written ABAB.

Definition 5. A trick is won by teamA if its winner is mapped
to A with σ. The value of a game is the maximum number of
tricks that team A can win against team B.

The value of the game presented in Figure 1 is 3 as team
A can ensure making all remaining tricks with the following
strategy known as squeeze. Start with (s3,A) from h1 and
play (s2, 2) from h3, then start the second trick in the suit
where h2 elected to play.

2.2 Decision problem and fragments
The most natural decision problem associated to trick-taking
games is to compute whether the value of a game is larger or
equal to a given value ν. Put another way, is it possible for
some team to ensure capturing more than ν tricks? We will
see in Section 3 that the general problem is PSPACE-hard, but
there are several dimensions along which one can constrain
the problem. This should allow to better understand where the
complexity comes from.

Team mappings only allow team mappings belonging to a
language L ⊆ {A,B}∗, typically L = Li = {(AB)i}
or L = = {A,B}∗.

Number of suits the total number of distinct suits s is
bounded by a number s = S, or unbounded s = .

Length of suits the maximal number of ranks over all suits l
is bounded by a number l = L, or unbounded l = .

Symmetry for each suit, each hand needs to have the same
number of cards pertaining to that suit.

The fragments of problems respecting such constraints are
denoted by B(L, s, l) when symmetry is not assumed. If sym-
metry is assumed, then we denote the class by BM(L, s, l).
The largest class, that is, the set of all problems without any
restriction is B( , , ).
Example 1. The class of double-dummy Bridge problems is
exactly B(L2, 4, 13).

Proposition 1. B( , , ) is in PSPACE.

Proof. The game ends after a polynomial number of moves. It
is possible to perform a minimax search of all possible move
sequences using polynomial space to determine the maximal
number of tricks team A can achieve.



1 2 3

4 5 6

Figure 2: An instance of GG with 1 as the starting vertex.

2.3 Generalized Geography
Generalized Geography (GG) is a zero-sum two-player game
over a directed graph with one vertex token. Players take turn
moving the token to an adjacent vertex and thereby removing
the origin vertex. The player who cannot play anymore loses.
Figure 2 presents an instance of GG on a bipartite graph.

Deciding the winner of a GG instance is PSPACE-
complete [Schaefer, 1978], and GG was used to prove PSPACE-
hardness for numerous games including GO [Lichtenstein
and Sipser, 1980], OTHELLO [Iwata and Kasai, 1994], AMA-
ZONS [Furtak et al., 2005], UNO [Demaine et al., 2010]. Licht-
enstein and Sipser have shown that GG remains PSPACE-hard
even if the graph is assumed to be bipartite [1980].

3 Unbounded number of hands
We present a polynomial reduction from bipartite GG to
B( , , ). An instance of GG on a bipartite graph is given by
(G = (VA ∪ VB , EAB ∪ EBA), v1) where v1 ∈ VA denotes
the initial location of the token. Let m = mAB +mBA the
number of edges and n the number of vertices. We construct
an instance of B( , , ) using m + 2 suits, and n + 2 hands
as follows. Each vertex v ∈ VA (resp. ∈ VB) is encoded by a
hand hv owned by team A (resp. B). We add two additional
hands, hand hA for team A and hB for team B.

Each edge (s, t) ∈ EAB (resp. EBA) is encoded by a suit
ss,t of length 5, for instance {AKQJT}. The cards in suit ss,t
are dealt such that hand hs receives JT, hand ht receives A,
and hand hA (resp. hB) receives KQ. We add two additional
suits sA and sB . sA (resp. sB) is dealt such that hA (resp. hB)
receives 2mBA + 1 (resp. 2mAB + 1) cards of highest rank.
Each hand hv, v ∈ VB (resp. v ∈ VA) is filled with low-rank
cards in suit sA (resp. sB) until a total of t = 2m + 1 cards.
Low-rank cards are written x when the exact rank matters not.

The game starts in the hand hv1 and teamA wins if it makes
2mBA + 1 tricks, or equivalently, team B wins if it makes
t − 2mBA = 2mAB + 1 tricks. We denote that instance of
B( , , ) by φ(G, v1). Figure 3 shows the reduction of an
instance of GG to a trick-taking card game in B( , , ).

Lemma 1. Team A can ensure that as long hB does not win
a trick, the sum of the number of tricks won by team A and the
number of cards in suit sA in hand hA is greater or equal to
2mBA + 1. The converse holds for team B.

Proof. Hand hA only discards when a suit sv′,v is lead with
v ∈ VA, in that case hv plays an ace and wins the trick.

Thus, as soon as hand hA gets the lead, team A achieves its
goal. As a result, playing in suit sA is a losing move for team
B. Also, if hand hv, v ∈ VA ever gets the lead again after
having played in suit sv,v′ , then it can give the lead to hand
hA through playing sv,v′ once more. Therefore, after hand hv

h1 h2 h3

sB x. . . sB x. . . sB x. . .
s1,4 JT s2,6 JT s3,5 JT
s1,5 JT s4,2 A s3,6 JT

s6,3 A

h4 h5 h6

sA x. . . sA x. . . sA x. . .
s1,4 A s1,5 A s2,6 A
s4,2 JT s3,5 A s3,6 A

s6,3 JT

hA

sA AKQJT9. . .
s1,4 KQ
s1,5 KQ
s2,6 KQ
s3,5 KQ
s3,6 KQ

hB

sB AKQJT9. . .
s4,2 KQ
s6,3 KQ

Figure 3: Reduction from Figure 2. h1 leads the first trick.

is in the lead, playing in any suit sv′,v effectively becomes a
losing move for any v′ ∈ VB .
Lemma 2. If the first player has a winning strategy in G, then
team A can make 2mBA + 1 tricks in φ(G).

The same result also applies to team B. Therefore team
A has a winning strategy in φ(G, v1) if and only if the first
player has a winning strategy in the instance (G, v1) of GG.
The reduction is thus complete, leading to PSPACE-hardness.
Theorem 1. B( , , ) is PSPACE-complete.

Note that the previous reduction can be slightly adapted so
that the number of cards in each suit is at most 5. Suits sA and
sB can indeed be split into multiple equivalent suits of length
at most 5 without essentially changing the reduction.
Theorem 2. B( , , 5) is PSPACE-complete.

4 Bounded number of hands
The trick balance in an intermediate position is the number of
tricks made by team A so far minus the number of tricks made
by team B so far.

The basic idea of this reduction is that we have a termination
gadget that allows both team to end the game by splitting
the remaining tricks evenly. However, using the termination
gadget comes with a small cost. So each team tries to achieve
a sufficiently high trick balance before terminating the game.
The termination gadget involves two suits sA and sB and four
hands h3 through h6 that do not otherwise influence the game.

Besides the termination gadget, we have two hands, one
per team, and one suit sv for each vertex v of the GG instance.
A team, say A, can threaten to increase the trick balance in
their favour by playing in the attacking gadget of a suit sv.
This can only be defended by having the opponent team, say
B, counter-attacking in a suit sv′ . B can choose sv′ , but for
the defense to be successful, v′ needs to be a neighbor of v
in GG. After this exchange is performed, team B has priority
to attack but can only attack in suit sv′’s attacking gadget.
The same process goes on until the defending team cannot
find an appropriate counter-attacking suit. At that moment, the
attacking team manages to increase the trick balance enough to
safely terminate the game in their favour. We see that picking
the counter-attacking suits emulates a game of GG on G.

Let G = ((V = VA ∪ VB , E), v1) be a directed bipartite
graph and one of its vertices, v1 ∈ VA, be an instance of GG.
Let n = nA+nB be the number of vertices, and N(v) denote



Hand Suit Ranks

h1 sA 1
h2 sB 1

h3 sA 2t+ 1 2——3

h4 sA 2t 2——2

h5 sB 2t+ 1——2t− 5ω/2 + 2 2——5ω/2 + 2

h6 sB 2t− 5ω/2 + 1 2——5ω/2 + 1——2

Figure 4: The termination gadget. x 2—— x′ is a shorthand
for x, x − 2, . . . , x′ + 2, x′, and x——x′ is a shorthand for
x, x− 1, . . . , x′ + 1, x′. Only the suits involved are displayed.

the neighbors of a vertex v, {v′, (v, v′) ∈ E}. We construct
in polynomial time an equivalent instance of B(L3, , ) using
6 hands and s = n + 2 suits. In the instance we create, the
seating order does not have any influence so we will represent
gadgets and positions simply by listing the cards in each hand
in a table. In the following, we will set ω = 24n and use t to
represent the total number of tricks to be made.3 Team A wins
if they make strictly more than k = t/2 + 3ω/8 tricks.

4.1 Presentation of the gadgets
Unless the gadgets are not symmetric, we only describe one
team’s version of the gadgets. Assume an arbitrary ordering
on the vertices in VA and in VB , that is VA = {v1, v2, . . . vnA

}
and VB = {v′1, v′2, . . . v′nB

}.

The termination gadget. The suit sA is possessed only by
hands h1 , h3 and h4. Hands h3 and h4 have 2t interleaved
cards, and hand h1 has just enough cards of lowest ranks so
that h1 has a total of t cards after all other gadgets have been
taken into account. Thus, hands h3 and h4 have only cards in
the suit sA. The suit sB is owned only by hands h2, h5 and
h6. and is displayed similarly for hands h2, h5, and h6, except
that h5 has 5ω/2 top cards to cash before 2t − 5ω/2 cards are
interleaved (see Figure 4).

The following two lemmas allow us to focus on hands h1
and h2 in the remaining of this reduction.

Lemma 3. If h1 leads and the trick balance is at least 3ω/4,
then team A can ensure winning the game.

Proof. Team A can play in the suit sA then the rest of the
game will hold between hands h3 and h4. Hence team A wins
half of the remaining tricks for a total greater than k.

Lemma 4. If h2 leads and the trick balance is at most −7ω/4,
then team B can ensure winning the game.

The e|w-block. An e|w-block in a suit s for team A is a
gadget allowing that team to cash (win) w tricks by first sacri-
ficing (establishing) e tricks in the suit. In other words, hand
h2 has the e top cards, h1 has the e+ w following top cards,
and h2 has w cards of lowest ranks x to avoid any discarding.
Figure 5 provides an example of a 3|4-block.

3t’s exact value can be computed and is polynomial in the input.

Hand Suit Ranks Concise notation

h1 s 7 — 1 3|4
h2 s 10 — 8 xxxx

Figure 5: A 3|4-block in a suit s for team A. Only the hands
and the suits involved in this gadget are displayed. h2 does
have cards in suit s, but they are not displayed in the compact
notation, as they can be deduced from the cards in h1.

Hand Suit Ranks Concise notation

h1 s 27 — 20 15 — 9 5 — 1 3|5 4|3 3|2
h2 s 30 — 28 19 — 16 8 — 6 xx. . .

Figure 6: Concatenation of 3|5-, 4|3- and 3|2-blocks in s for
team A. There are 5 + 3 + 2 = 10 x in suit s in hand h2.

We can concatenate several e|w-blocks for the same team
in the same suit. For instance, Figure 6 shows how blocks are
concatenated and provides a more concise notation.

Given a vertex v ∈ V , a concatenation of e|w blocks with
various values for e allows to encode the index of v in an
attacking gadget. It also allows to encode which vertex v′, v
is adjacent to in a counter-attacking gadget via their indices.
If v ∈ VB (resp. VA), the (counter-)attacking gadgets will be
for team A (resp. B) and we say that the corresponding suit
is a defensive suit for team B (resp. A). The e|w-blocks we
need in the following have e an integer in [1, . . . , 6], and w a
fraction of ω.

The counter-attacking and attacking gadgets. Consider
two words over {0, 1} for each suit sv with v ∈ VA. The
attacking word for suit svi is a such that a(0) = 1, a(nA +
1) = 0, and for each j 6= i, j ∈ [1, nA], a(j) = 0 and
a(i) = 1. The counter-attacking word for suit svi is c such
that c(0) = 1, c(nB + 1) = 1, and for each j ∈ [1, nB ], if
vi ∈ N(vj) then c(j) = 1 else c(j) = 0.

The gadgets can be built by looking at adjacent letters in
these words. If these letters are 11 or 00, put a 2|ω-block. If
they are 10, put 3|ω-block, and if they are 01, put 1|ω. We
thus define for each suit sv, a counter-attacking gadget C(v)
and an attacking gadget A(v). The words and gadgets for the
GG instance in Figure 2 are given in Figure 7.

Let v ∈ VA and v′ ∈ VB . Observe that the sum of the e

Suit Counter-attacking Attacking

Word c Gadget C Word a Gadget A
sv1 1 000 1 3|ω 2|ω 2|ω 1|ω 1 100 0 2|ω 3|ω 2|ω 2|ω
sv2 1 100 1 2|ω 3|ω 2|ω 1|ω 1 010 0 3|ω 1|ω 3|ω 2|ω
sv3 1 001 1 3|ω 2|ω 1|ω 2|ω 1 001 0 3|ω 2|ω 1|ω 3|ω
sv4 1 100 1 2|ω 3|ω 2|ω 1|ω 1 100 0 2|ω 3|ω 2|ω 2|ω
sv5 1 101 1 2|ω 3|ω 1|ω 2|ω 1 010 0 3|ω 1|ω 3|ω 2|ω
sv6 1 011 1 3|ω 1|ω 2|ω 2|ω 1 001 0 3|ω 2|ω 1|ω 3|ω

Figure 7: Counter-attacking and attacking gadgets in the in-
stance corresponding to Figure 2.



Hand Suit Ranks

sv1 6|ω 1|3ω/2 A(v1) 1|3ω/2
h2 sv2 4|ω/2 3|2ω C(v2) 2|2ω 6|ω 1|3ω/2 A(v2) 1|3ω/2

sv3 4|ω/2 3|2ω C(v3) 2|2ω 6|ω 1|3ω/2 A(v3) 1|3ω/2
sv4 5|ω 1|3ω/2 C(v4) 2|ω 4|ω 3|3ω/2 1|3ω/2 A(v4) 1|ω

h1 sv5 5|ω 1|3ω/2 C(v5) 2|ω 4|ω 3|3ω/2 1|3ω/2 A(v5) 1|ω
sv6 5|ω 1|3ω/2 C(v6) 2|ω 4|ω 3|3ω/2 1|3ω/2 A(v6) 1|ω

Figure 8: Combination of attacking and counter-attacking
gadgets for the instance corresponding to Figure 2, with v1 as
starting vertex.

parts of the A(v) gadgets is equal to 2(nA + 1) + 1 and that
of the C(v′) gadgets is 2(nA + 1). Similarly, the sum of the
w parts is ω(nA + 1). The same holds for A(v′) and C(v),
replacing nB with nA.

In the next two lemmas, we assume optimal play from both
teams subject to leading from a single suit.
Lemma 5. Assume the initial trick balance is b, teamB starts,
team A only leads cards from A(v), and team B only leads
cards from C(v′). The trick balance remains ≥ b − ω. If
v′ ∈ N(v), it remains ≤ b+ 1, else it reaches b+ ω.

Proof. It is optimal to play blocks from the highest to the
lowest ranked when in lead, and to take any trick offered when
not in lead. Let i be the index of v. Observe that team A needs
to 2j+1 tempi to establish the jth block if j 6= i, and 2i tempi
for the ith block.4 Team B needs 2j tempi to establish the jth
block if v′ ∈ N(vj), and 2j + 1 tempi otherwise.

Lemma 6. Assume the initial trick balance is b, team A starts,
team A only leads cards from C(v), and team B only leads
cards from A(v′). The trick balance remains ≤ b + ω. If
v ∈ N(v′), it remains ≥ b− 1, else it reaches b− ω.

When team A attacks in suit sv and team B does not play
in an admissible counter-attacking suit, team A wins ω tricks
(Lemma 5) and wins the game by termination (Lemma 3).
Conversely, if team A does not play in a neighboring suit
when team B attacks, team A loses (Lemma 4, 6). Thus,
Lemmas 5 and 6 give the graph structure to the suits.

Combining the attacking and counter-attacking gadgets.
We now complete the picture so that the assumptions of Lem-
mas 5 and 6 are met.

In each suit sv of hand h1 (resp. h2) but the one correspond-
ing to the starting vertex v1, we start by the counter-attacking
gadget C(v) surrounded by the fixed sequences 5|ω 1|3ω/2 and
2|ω (resp. 4|ω/2 3|2ω and 2|2ω) and call it first part of the suit.
We then add to each suit, including sv1 , the attacking gadget
A(v) surrounded by the fixed sequences 4|ω 3|3ω/2 1|3ω/2 and
1|ω (resp. 6|ω 1|3ω/2 and 1|3ω/2) and call it second part of the
suit. Figure 8 displays the combination resulting from the GG
instance in Figure 2; h1 also has cards in suits sv1 , sv2 , and
sv3 but they are not displayed as per the notation of Figure 5.

These fixed starting sequences ensure that once a team leads
in suit sv, they will continue leading only in sv until the suit

4We use the expression use a tempo as short for lose a trick lead.

is emptied. They also ensure, that while one team chooses the
attacking suit first, the opponent actually starts leading in the
counter-attacking gadget.

The ending sequences, on the other hand, ensure that after
the attacking suit sv and the first part of the counter-attacking
suit sv′ have been emptied, the situation corresponds to the
reduction from the GG instance with the edges adjacent to v
removed and v′ as a starting vertex.

Lemma 7. Leading in defensive suits can never help to win.

Proof. A team cannot cash more than 6n tricks in defensive
suits. As the fractions of ω are all discretised by 1/4, and
6n = ω/4, this cannot participate in winning.

Ensuring the teams simulate GG. Let P be a position re-
sulting from one constructed from a GG instance. Assume
there exists a suit sv (and v the corresponding vertex in the
original GG instance), such that for any suit s different from
sA, sB , and sv, s is dealt among hands h1 and h2 so as to
form a first part and a second part in h1 or in h2. If sv forms
only a second part in h2 (resp. h1), h2 (resp. h1) is on the lead,
and the trick balance is ω/2 (resp. 0), then we say that P is
A-clean (resp. B-clean) and sv is the current starting suit.

Lemma 8. Let P be a B-clean position with starting suit sv ,
and a suit sv′ such that v′ ∈ N(v). Assume teamA can ensure
winning with optimal play from P . If team B only leads from
suit sv′ and team A only leads from sv until sv is empty, then
we reach a A-clean position P ′ with sv′ as the starting suit.
Moreover, team A can ensure winning from P ′.

Proof. As P is a B-clean position, the trick balance is 0 and
the lead is on h1. Suppose team A plays in a suit su with
u 6= v and u ∈ VA, before having established and cashed the
ω tricks of the 6|ω-block of the color sv (first block of the
second part of that color). After 6 tempi, team B has had time
to cash the 5ω/2 tricks of the two first block 5|ω and 1|3ω/2 of
the color sv′ , while team A has at most cash the ω/2 winners
of the first block 4|ω/2 of su. Consequently, the balance trick
takes a value smaller than −2ω and team B wins accordingly
to Lemma 4. Thus, team A has to use the 6 first tempi to play
in sv. At this point, team B threatens to enter in C(v′) while
team A cannot yet enter A(v). That forces team A to play
again in v. Then, team B enters C(v′) immediately followed
by team A cashing 3ω/2 tricks (the trick balance is now 0) and
enteringA(v). Note that if teamA plays in another suit than v,
team B will win by persisting in C(v′) since the trick balance
will go be beneath −7ω/4. According to Lemma 5, if team A
plays solely in A(v), the trick balance is never losing for any
team. In the end, the balance is −ω, the lead is in h2 and the
only remaining cards in h1 in the color sv are 3ω/2 winners.
So the trick balance is virtually ω/2 and we reach a A-clean
position winning for team A.

Lemma 9. Let P be a A-clean position with starting suit sv′ .
Assume team A can ensure winning with optimal play from
P . Then there exists a suit sv such that v ∈ N(v′) and such
that if team B only leads from suit sv′ and team A only leads
from sv until sv′ is empty, then we reach a B-clean position



P ′ with sv as the starting suit. Moreover, team A can ensure
winning with optimal play from P ′.

Lemma 10. Let G be a GG instance, and consider the corre-
sponding B(L3, , ) instance B. If team A can win in B, then
the second player in G does not have a winning strategy.

Proof. Let σ bet a strategy for the second player in G and
let us show that σ is not winning. Assume team B plays
according to σ in the B instance. Team A can answer by
keeping simulating GG and still ensure winning (Lemma 8
and 9), thereby generating a strategy in GG. Since there are
only finitely many suits to be emptied, we will reach aB-clean
position with starting suit sv and without any suit sv′ such that
v′ ∈ N(v). This shows that the corresponding GG situation is
lost and that σ is not a winning strategy.

Lemma 11. Let G be a GG instance, and consider the corre-
sponding B(L3, , ) instance B. If team B can win in B, then
the first player in G does not have a winning strategy.

Proof. Similar proof with the dual to Lemmas 8 and 9.

These two propositions lead us to our main result.

Theorem 3. The B(L3, , ) fragment is PSPACE-hard.

5 Tractability results
In this part, we present a positive result when there is only one
hand per team and when the number of cards in any suit is
bounded by 4. Only a few positive results on trick taking card
games are known. The two following are the main ones.

Theorem 4 (Wästlund [2005a]). B(L1, 1, ) is in P.

Theorem 5 (Wästlund [2005b]). BM(L1, , ) is in P.

We now focus on the B(L1, , 4) fragment. Assume for the
sake of simplicity and wlog, that after each trick a normaliza-
tion process takes place so that suits with 4 and 3 cards have
ranks in {A,K,Q, J} and {A,K,Q} respectively.

A suit s is controlled by a player, if they can play in the suit
s and make all tricks in s.

We define a strategy σ as follows. When a player is not
leading and can follow suit, they play the lowest card ensuring
the trick is made if any, or the lowest card overall otherwise.
Otherwise suits are categorized and priority are associated
to each category for leading as well as for discarding. The
categories, their priority and the associated card to lead/discard
is displayed in Table 1.

Lemma 12. The strategy σ is optimal.

The strategy σ can be computed in polynomial time. We
can compute the total number of tricks a team can make by
having both players apply σ. This leads to the desired result.

Proposition 2. B(L1, , 4) is in P.

Table 1: Strategy σ for player P against O in B(L1, , 4). P
should not lead nor discard in a suit not mentionned.

Suit category Lead Discard
Card Priority Card Priority

Controlled by P highest 1 lowest 51

KQJ vs A any 2 any 3
KQ vs A or KQ vs AJ any 3 any 4
Controlled by O any 4 never
AJ vs KQ A 5 J 1
AQ vs KJ A 6 Q 22

KJ vs AQ J 7 never
1 If P has strictly more cards than O in the suit, else never.
2 If O does not controle all their suits, else never.

B( , , )
Thm. 1

B( , , 5)
Thm. 2

B(L3, , )
Thm. 3

B( , S, )

B(L1, , 4)
Prop. 2

B(L1, , )

BM(L1, , )
[Wästlund, 2005b]

B(L1, 1, )
[Wästlund, 2005a]

PTIME

PSPACE-complete

Figure 9: Summary of the hardness and tractability results
known for the fragments of B(L, s, l).

6 Conclusions and perspectives
In his thesis, Hearn proposed the following explanation to the
standing lack of hardness result for BRIDGE [2006, p122].

There is no natural geometric structure to exploit in
BRIDGE as there is in a typical board game.

Theorem 3 achieves a significant milestone in that respect.
The gadgets in the reduction indeed show that it is possible
to find a graphical structure within the suits. From all, the
attacking and counter-attacking gadgets stand as the central
idea, giving an adjacency list structure to suits, by means of a
precise race to establishment. Termination gadgets make those
races decisive.

Finding a PSPACE-hardness proof necessitating only 2 hands
is very appealing. Another interesting problem is to find a
hardness proof with a bounded number of suits. These two
new open problems along with Wästlund’s tractability results,
and the results derived in this paper are put in perspective in
Figure 9 which displays the complexity landscape for note-
worthy fragments of B(L, s, l).

Many actual trick-taking card games also feature a trump
suit and potentially different values for tricks based on which
cards were involved. Such a setting can be seen as a direct
generalization of ours, but remains bounded. Therefore our
PSPACE-completeness results carry over to point-based trick-
taking card games involving trumps.
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